blocksight 2021-05-11 20:20:20 阅读数:834

本文一共[544]字，预计阅读时长:1分钟~

mathematical
sigma
protocol
proof
signature

In the last introduction sigma Protocol and non interactive paradigm , You can see that non interactive sigma The protocol is very similar to the previous signature mechanism , If you pay attention to the chronological order in which they appear , You will know that the latter appeared later than sigma Years after the agreement was put forward , We believe it is on this basis .

Actually , Any technology （ even to the extent that “ thought ”） It's the same , They are all moving forward on the basis of their predecessors , Standing on the shoulders of giants , To stand high and look far ！

Shut oneself up in a room making a cart , I've always had to do it ！ So understanding the history and current situation of the target is the premise of development . Otherwise, when you don't know why something appeared and where it was at that time in history , There will be a lot of doubts .

“ The west wind withered the trees last night , Alone on tall buildings , Looking at the end of the earth ”, It's about the first stage of learning , That is to know the past , The present .

This article continues with sigma Protocol related extensions and applications ！

Take exponential operation as an example ( Parameters are the same as above ), hypothesis P know $y_1=g_1^{x_1}$ , $y_2=g_2^{x_2}$（mod p Omitted ） Any exponential secret in the equation ,$x_1$ or $x_2$ person , P How to talk to V Prove that he knows one of them but doesn't disclose which one ？

Premise ：$g_1,g_2,g_3$ It has been made public

hypothesis P What we know is $x_1$,P technological process ：1） Random selection $v_1,v_2.w$, Calculation $t_1=g_1^{x_1}$,$t_2=y_2^wg_2^{v_2}$,

2） Make c = Hash($g_1,g_2,y_1,y_2,t_1,t_2$)

3） Make $c_1=w,c_2=c-c_1 (mod\ q)$

4）$r_1=v_1-c_1x_1,r_2=v_2 (mod\ q)$

V technological process ：5） V Calculation $t_1'=y_1^{c_1}g_1^{r_1}$ , $t_2'=y_2^{c_1}g_2^{r_2}$ test $t_1'=?=t_1$,$t_2'=t_2$

6） Calculation $c_1+c_2=?= Hash(g_1,g_2,y_1,y_2,t_1',t_2') (mod\ q)$

The inspection process can be deduced by itself ！

By imitation Schnorr Construction , You can take whatever you want Sigma The protocol is transformed into identity authentication scheme and signature scheme . hypothesis （P,V） It's built on relationships $R\subset (X*Y) $ Upper Sigma agreement . Need to add :

- A probability ( Randomness ) And it has one-way characteristic , Generate pk,sk, And $（sk,pk）\in R$
- Safe hash function , As random Oracle, yes Fiat-Shamir The core of transformation

Okay , Fully built Fiat-Shamir The flow of signature scheme is as follows ：

- Key generation algorithm G Generate public key （x,y）$\in R$
- P(Prover part ) Generate commitment t, t$\in T$
- P Computing challenges c = H(m, t),m It's a message to be signed
- P What makes the challenge response z$\in Z$
- P According to the challenge z Generate signature ：s = (t,z)$\in T*Z$
- V(Verifier part ) Use public key y, verification (t,z)$\in T*Z$ , And c = H(m, t), Otherwise, refuse ！

It's fun to be here , Let's look back at the signature mechanism described earlier （RSA,ECDSA,Schnorr,EdDSA etc. ）, It can be found that this article is almost an abstract version of these signature mechanisms , They are all concrete examples ！

So here the signature mechanism has formed a small closed loop , Know what it is, know what it is ！ We always thought ** Fragmented knowledge has no power , Only a systematic system can be stable and far-reaching ！**

In addition, based on sigma There are other examples of agreements Such as Okamoto’s protocol,And proof I won't introduce ！

Reference resources :https://zhuanlan.zhihu.com/p/144899541 https://crypto.ethz.ch/publications/files/CamSta97b.pdf

Link to the original text ：https://mp.weixin.qq.com/s/LYgW0YVdOv4jHIh05Y0r3g

Welcome to the official account ：blocksight

Mathematics in blockchain -sigma Deal with the Fiat-Shamir Transformation sigma Deal with the Fiat-Shamir Transformation

Mathematics in blockchain - What is zero knowledge proof ? What is zero knowledge proof

Mathematics in blockchain - RSA Non member proof of accumulator RSA Accumulator Non member proof and blockchain applications

Mathematics in blockchain - Accumulator( accumulator ) Accumulator and RSA Accumulator

Mathematics in blockchain - Kate promise batch opening Kate Promise volume Certification

Mathematics in blockchain - I promise Knowledge and commitment

Mathematics in blockchain - Pedersen Key sharing Pedersen Key sharing

Mathematics in blockchain - Pedersen promise Cryptography promises --Pedersen promise

Mathematics in blockchain - Inadvertently transmit Oblivious transport protocol

Mathematics in blockchain - RSA Algorithm encryption and decryption process and principle RSA Encryption and decryption algorithm

Mathematics in blockchain - BLS Threshold signature BLS m of n Threshold signature

Mathematics in blockchain - BLS Key aggregation BLS Key aggregation

Schorr Signature Basics Schorr Signature and elliptic curve

Mathematics in blockchain -Uniwap Automated market maker core algorithm analysis Uniwap Core algorithm analysis （ in ）

版权声明：本文为[blocksight]所创，转载请带上原文链接，感谢。 https://netfreeman.com/2021/05/20210511201007579j.html

- In depth analysis of the basic components of the defi loan agreement
- 美SEC指控区块链信贷公司非法出售超3000万美元证券
- 深度 | 巴菲特在数字资产的估值中错过了什么？
- The US SEC accused blockchain credit companies of illegally selling securities exceeding US $30 million
- What did Buffett miss in the valuation of digital assets?
- Solana上的跨链生态
- 广东省税务局区块链出口退税业务成功上线
- 区块链50收评 | 成分股涨跌不一 两极分化明显
- 新闻周刊 | 以太坊主网完成伦敦升级
- Cross chain ecology on Solana
- Guangdong provincial taxation bureau successfully launched the blockchain export tax rebate business
- Blockchain 50 closing comments | component stocks did not rise or fall significantly
- Newsweek - Ethereum main network upgraded in London
- 区块链大有前途，数字货币不会消失
- Blockchain has great prospects, and digital currency will not disappear
- 区块链中很重要的10个项目
- 解析去中心化衍生品三大流派：能否撼动中心化交易所地位？
- 技术周刊｜伦敦升级后以太坊平均每分钟燃烧2.36ETH
- 数字人民币本质上不也是人民币吗，为什么说能挑战美元霸权？
- 10 important projects in the blockchain
- Analyzing the three schools of decentralized derivatives: can we shake the status of centralized exchanges?
- Techweek London upgraded Ethereum burns an average of 2.36 eth per minute
- Isn't digital RMB also RMB in essence? Why can it challenge the hegemony of the US dollar?
- Blockchain practice (II) realization of pow workload proof | 15th day of settlement
- 外媒：美国新的比特币税收计划可能扼杀更环保的区块链技术
- Foreign media: the new bitcoin tax plan in the United States may stifle more environmentally friendly blockchain technology
- 【geth】Go调用智能合约 | 一起来学区块链
- 【geth】Go语言调用以太坊 | 一起来学区块链
- [get] go invokes the smart contract | together with the school district block chain
- [get] go language calls Ethereum | together with the school district block chain
- EIP-1559实施后 Gas为什么没有剧烈下降
- Why didn't gas drop sharply after the implementation of eip-1559
- 以太坊伦敦升级已完成 矿工有哪些注意事项?
- Ethereum London upgrade has been completed. What should miners pay attention to?
- 项目周刊｜以太坊在两天内销毁了新币发行量的36%
- Project weekly Ethereum destroyed 36% of the circulation of new coins in two days
- 加密企业如何通过区块链认证绿色能源？
- How can encryption enterprises certify green energy through blockchain?
- 从SEC主席最新演讲谈数字货币行业风控
- On risk control of digital currency industry from the latest speech of SEC Chairman
- DeFi 龙头的再进化之旅：纵览 Uniswap V3 生态全景
- The re evolution journey of defi leader: an overview of uniswap V3 ecology
- 英国拍卖行佳士得拍卖 Cryptopunks、Meebits、Bored Apes NFT
- 卡尔达诺报告：在 Wave Financial Group 的支持下实现完全中心化和全球金融普惠
- NFT，开启“元宇宙”的钥匙
- 以太坊燃烧第一个24小时：中文社区在关心什么
- British auction house Christie's auctions cryptopunks, meebits, bored apes NFT
- Caldano report: complete centralization and global financial inclusion with the support of wave financial group
- NFT, the key to the "meta universe"
- Ethereum burning for the first 24 hours: what does the Chinese community care about
- 趣币早报 |美国阻止财政部挑选加密货币的赢家和输家
- Qu coin morning post | the United States prevents the treasury from selecting the winners and losers of cryptocurrency
- 区块链 公钥 私钥 生成地址 关系
- Address relationship generated by blockchain public key and private key
- 如何实现去中心化跨链消息传递和资产转移？
- 以太坊伦敦升级：随之生效的以太坊EIP-1559是什么
- Tokemak能否支配更多DeFi流动性
- How to achieve decentralized cross chain messaging and asset transfer?
- Ethereum London upgrade: what is Ethereum eip-1559 in effect
- Can tokemak dominate more defi liquidity